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CONTROL OF SYSTEMS CONTAINING
DERIVATIVES OF THE CONTROL
VARIABLE"

+

by Wayne Schmaedeke

~ 720/ ABSTRACT

Problems of control of plants modeled by differential
equations containing derivatives of the control (or forcing)
functions are discussed. These right side plant dynamics in
conjunction with relay type Jumps in the forcing functions re-
quire an analysis or synthesis method to accommodate derivatives
of step functions. Previously this problem has been avoided
formally by transforming to a special set of coordinates in
which only zero order forcing terms appear. This paper develops
a mathematical model for equations with derivatives of the
control functions and establishes conditions under which the

formal transformation referred to above can be rigorously

. T
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MATHEMATICAL MODEL OF A CONTROL SYSTEM CONTAiﬁING
DERIVATIVES OF THE CONTROL VARIABLES
In the following,oé)will be a domain in the (t,x)-space,
f(t,x) will be an n-vector function defined on o8 and u(t) will
be an r-vector each of whose components are of bounded variation

and continuous from the right on an interval Il' The function

Dt - W - . oma - ——— - - - =

* Prepared under contract NASw-563 for the NASA.
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g(t) will be a continuous nxr matrix defined on I, and (to,xo)
will be a point 1n49 with to also in Il.

In a control problem, one is given a differentlial equation

[oR

X p(t,x,u) + g(t)E )

involving f, g, u, and x. The operations of differentiation
are to be understood in the sense of distribution derivatives
and the equation will be called a measure differential equation
because the distribution derivative of a function of bounded
variation can always be identified with a measure. The problem
of control is to select the r-vector u(t) on an interval of
time [to,tll so that the solution (response) of (J) will
initiate at a prescribed point X, at the time to and behave in
a prescribed manner on the interval [to,tll. For example, 1t
may be desired to steer the response from X, to a continuously
moving target set G(t)c R".

It will be convenient to change the notation in «8) to con-

form with the previous remarks and to write the equation as
Dx = £(t,x,u) + g(t)Du, x(to) = X ()

Here the notation Dx means the distribution derivative of the

function x,.

DEFINITION 1. A solution x(t) of (#) is a real bounded variation

n-vector x(t) together with an interval I containing the given
initial time t, such that %(t) is continuous from the right on
I and
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; (1) (£,x(t)) e for t e I
(11) =x(t.) = x,
(111) the distribution derivative of x(t) on I is
f(t,x) + g(t)Du.

Next, the integral equation

t t
x(t) = x, + [ £(s,x(s),u(s))as + [ g(s)au(s). )
1:0 tO

will be considered.

DEFINITION 2. A solution x(t) of (f) is a real bounded variation

n-vector x(t) together with an interval I such that

(1) (t,x(t)) e for t e I

(11) =x(t) satisfies the integral equation
REMARK: A solution x(t) of (d)) is necessarily continuous from
the right. Also, x(t) has discontinuities where u does.
THEOREM 1. A solution x(t) of (@) is a solution x(t) of ()
and conversely.

A proof of Theorem 1 is given in reference 1. Also included
in that reference are a number of theorems relating to existence
and uniqueness of solutions to (), both locally and globally.

For convenience in discussing the control problem for an
equation of the form (M), the following assumptions regarding
the coefficients are made:

(1) f£(t,x,u), g%(t,x,u)) are real continuous functions

1

in R™ x Rn x § where Rn is the real n-dimensional number

space and Q is a non-empty compact subset of R,
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(11) g(t) is a continuous nxr-matrix on r!

(1i1) The functions u(t) are of bounded variation and
continuous from the right on appropriate time intervals

such that the graph of u(t) lies in Q.

For each function u(t) as in (iii), but defined on a finite
interval [to,tll, the measure differential equation (7)) has a
unique bounded variation solution (called a response) on
[to,tl] (or a subinterval) through a prescribéd initial point
(to,x ). This is a result of the existence and uniqueness
theorems of Chapter I of reference 1. The representation of a
response 1s, of course, the unique bounded variation solution of
the integral equation

t t
x(t) = x  + { £(s,x(s),u(s))ds + { g(s)du(s). (d)
"o )

DEFINITION 3. A control for the system (@) where a non-empty

compact set ) contained in rY and an initial point X5 in R"
have been prescribed, is a vector valued function u(t) of bounded
variation and continuous from the right on a finite interval

[to,tl] with its graph in Q such that its response x{(t) with

. O T S ¢ r. PR |
x(to) = X, is also defined in R on [t ,t;].

DEFINITION 4. For a given real valued continuous function
1

£%(t,x,u) defined on R* x R x 9, the cost functional C(u)

of a control u(t) on [to,tll with response x(t) is defined by
t
1o
C{u) = [ £(s,x(s),uls))ds.
t
)
If £°(t,x,u) = 1 then c(u) = t; - t,, the time duration over

which the control is exerted.
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DEFINITION 5. Given the control problem for

a) Dx = f(t,x,u) + g(t)Du with £, g, and u as previously
described; the following data is also glven:

b) a non-empty compact restraint set acr’ (containing
the graphs on the controls)

¢) x_. e R®, the initial point

o)
a) G(t)CR® on [To,rll the continuously moving target set
51
e) c(u) =f £°(s,x(s),u(s))ds, the cost functional.
t
o

For a given number E > 0, the set
A=A (£(t,x,u), g(t), Q, > G(t), E) is defined as the set of
all controls u(t) in  with u(t) of bounded variation and right
continuous on subintervals [to,tllc:[ro,rl] such that the total
variation of each function u(t) on its interval [t,-ty] 18 less
than or equal to E, and with responses x(t) such that x(to) = X

(o)

and x(tl) € G(t This set A is called the set of admissible

D

controls,

DEFINITION 6. A control u*(t) in A is called optimal in case
C(u*) < C(u)

for every u(t) in A.

REMARK: The hypothesils concerning the uniform bounded total

varlation of the admissible controls is concerned with the fact

that in a large class of problems the total variation 1s a

mathematical manifestation of the motion of some process. It is

those processes which contain devices capable of sustaining only a

bounded amount of movement, regardless of the admissible control

that 1is applied, to which the following theorem pertains.
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THEOREM 2. Given the control problem described in Definition 5
with the further restriction that there exist a non-decreasing
function h(t) continuous from the right such that all u(t) in
A satisfy the inequalities
[u(B) - u(a)| & h(B) - hla)
for every subinterval [a,B] of the interval [t .t  + 5] for
some appropriate & > 0O, however small,
It will be assumed that the set A 1s such that
A) A is not empty
B) There exists a real bound B € oo such that for all
responses x(t) corresponding to controls in A we
have |x(t)| < B.
CONCLUSION: Then there exlsts an optimal control in A.

REMARK: It is assumed that X, 1s not in the target G(to), then
the inequalities between u and h guarantee that x(t) lies outside
G(t) for all responses and all t sufficiently near t,. If the
functions u(t) in A satisfy a uniform Lipschitz condition for all
t in a neighborhood of to then the function h(t) may be taken to
be a multiple of t.

The proof of Theorem 2 may be found in reference 1.

A STUDY OF A CERTAIN LINEAR EQUATION
The linear ordinary differential equation
X + a)X + a X = byu + byu. (&)
will be considered. This equation might be obtained, for example,
in the analysis of the control of aircraft. (Reference 2, where

the equations of longitudinal-symmetric motion of a rigid aircraft
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are derived, contains the details). In particular, the small
amplitude pitch motions of many aircraft can be summarized
apprcximately by solutions of the equations
& - kja - 6 = k;5 (Flight Path equation) (1)
6 - k3é - ko - ks& = kg6 (Pitch equation) (2)
Here the kJ are constants while a corresponds to the ailrcraft
fuselage reference angle of attack, 6 corresponds to pitch
attitude change, and 5 denotes elevator deflection. It will be
convenient to define x = 6 and to eliminate o and 4 from (1),
(2) and the equation obtained from differentiating (2). The
result is
% - (kptkgtks)® + (kykg-ky )x = (k6+k2k5)é + (koky, -k k)6 (3)
The equation (3) i1s precisely of the form (F). It is a problem
of conslderable importance in engineering to treat this equation
by allowing the control variable u(t) to be of the relay type,
l.e., to have discontinuities of the first kind. The presence
of a derivative of u(t) prevents existing theories from being
applied and the problem is avoided formally by transforming to
a set of coordinates in which the derivatives of the control
variable do not appear, (reference 3, p. 191 supplies the details),
To be more specific now, the equation (£) will be considered

where ays 2,5, bl’ b, are constants and where x(to) = Xy x(to) = %f

2
[u(t)] < @ for a > 0, and a;, a, > 0, by # 0, by # 0. The

target will be any compact set containing the origin of the

(x,i)nplane and the cost functional will be given as

tl .
clu) = [ £2(x(9x(s), u(s))ds.
%o
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At this point (F) will be reduced to a linear system free
from derivatives of the control variable, (reference 3 p. 191
supplies the details). To this end, x is defined by

X = ﬁl + G (t)u
for as yet undetermined, Go(t) and ﬁg is defined by
%y = ﬁg + Gy (t)u .
for undetermined G,(t). Then it is clear that §2 is given by

£
2
where Go, Gl’ and 02 are determined by elliminating ﬁl and Qé

= —aoﬁl - alﬁa + Ge(t)u

from the above and requiring that the resultant differential
equation agree with (¥). The result is

Go(t) =0
G,(t) = b
Gz(t) = b, - a;b,.
The system
A A
X =X + blu ©)

A
%, = -aoil - a;%, + (b, - a;by)u
is obtained with initial conditions

A
xl(to) = X

A
x2(to) = C, - byu(t,).

It is sbserved that the initial point (xo, Co) has been trans-
formed to a line segment in the (ﬁl, %2)-plane and that the
target G would be similarly "enlarged". For simplicity, it is
assumed that the origin of the (%l, §2)-plane is in the interior

of G(§1,§2). The cost functional becomes
t

1l
Q)(u) = { fo(ﬁl(s), ﬁz(s) + blu(s), u(s))ds.
o
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The ordinary system 09) does not contain derivatives of the
control variables and can therefore be studied using the
conventional theory.
Next, (E) is written as a linear system by making no

attempt to eliminate the derivatives of the control variable,
i.e., by proceeding in a natural way by defining

X =X
the following system is obtained:

xl = X2 (E)

X, = -aoxl - alx2_+ blu + b2u.

At this point, the class of admissible controls 1s taken to
be the functions u(t) of uniform bounded variation, with
v(u,[to, tl]) < M, such that |u] g.a.l Then (é) is written
as a measure differential system

Dx, = x

1 e )

Dx -aoxl - alx2 + leu + beu.

2
The initial conditions in this instance are
x,(t5) = %,
x,(ty) = Cq

and the cost functional is

1v(u,[to,tl]) means the total varilation of the vector u(t) on
the interval [to,t1], i.e., each component of u(t) is of
uniform bounded total variation.
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t

() = {olr°(x1(s), x5(8), u(s))ds.

The target 1s assumed to have been defined by G(x, x) < 0 in
which case the target becomes the set in the (§l,x2)-plane
defined by G(xl,xe) £ 0.

It is shown in reference 1 that the set A,nfor this
problem is not empty.

Now the responses to a linear system are easlly shown to
be uniformly bounded and the set A of admissible controls with
variations limited by some vary large constant E which transfer
X, = (xl(to) xg(to)) to the origin is clearly not empty since
the domain of controllability is the entire (xl, x2)-p1ane.
Hence there exists an optimal control u*(t) in A which transfers
the point X = (xo,co) to the target G(xl,xe) < O because
the target was assumed to contain the origin of R2. The
question resolved below is under what conditions will u*(t)
also be the optimal control for the system (@) when that system
is studied using the conventional methods?

A connection is first established between the components
of the two vector solutions X(t) = (xl(t), x2(t))/ and
X(t) = (ﬁl(t), §2(t)f of (M) and (O8) respectively.

THEOREM 3. If u(t) is any function of bounded variation, then
the first components of X(t) and i(t) are identical and
the second components are related by
x5(t) = X5(t) = byu(t).
PROOF: It is observed that the systems (&) and (%) have the

same homogeneous part and that the fundamental solution matrix
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ls eAt where

-a "al

A
‘ Hence, forming the difference X(t) - X(t) by using the variation
of parameters representations for the solutions of each, there

: results

(X,-X,) + {t eA(t'S)LliJ u(s)ds +
o

+ ft e(t's)A [O ] du(s).
1l

to b

x(t) - k(t) = eA(t_t°)

Now, by integration by parts:

fteA(t's) [O ]du(s) = - ft %E eA(t's) [o } u(s)ds +
t b1

2 Py
0 a(t-t,) [ ©
+. u(t) - e u, .
by by
Thus

. At-t) . [ o 0
X(t) - X(t) = e [X,-X, - ]+ +
byu, blu(t)
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and the above reduced to

0o
X(t) - X(t) ={ J . QED.
blu(t)

A comparison of the cost functionals Ca(u) and qm(u) when
u 1s a function of bounded variation shows by virtue of Theorem
3 that they are identilcal.

Returning now to the study of system (9), Ay is defined to
be the set of all measurable functions u(t) whose graphs lie
in the set Q: {u:lul g_a} and whose responses originate on the
closed interval %,(t_) = x,, Cg - & < X,(t,) £ C, + S
and which are transferred to the target at time tl. It is shown
in reference 1 that AQ is not empty.

It is to be noticed that if u¥(t) is substituted in Ce(u),
there results

C&(u*) Z_Ce(u).
Next, since the system &) is proper (i.e., rank [B, AB] = 2)
then the optimal control u(t) will be relay if, for example,
u appears linearly in f°(x,t), the integrand of the cost
functional. Being a relay or step function (assuming values
+a or -a on finite segments of time) the optimal control u is
of bounded variation. Thus the two cost functionals Ce(u) and
qwéu) are identical and there results (by definition of u* as
minimizing qm(u) over all bounded variation controls whose
total variation is uniformly bounded)
CpdU*) £ G, (3).
But also the inequalities
Gn(8) = Co(R) ¢ Colux) = g, (u¥) £ €, (1)
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imply qg(ﬁ) = Qg(u*) and thus u(t) 1s an optimal control for
the system (%) because it has the desired response., Also when

transforming back to x and x in (E) there results

from (M) :
x(t) = xl(t)
%(t) = x,(t)
rfrom (9):
x(t) = %, (¢)
x(t) = 2,(t) + byu(t).

But by Theorem 3, these are ldentical sets of data.

CONCLUSION
The optimal control problem for
X + a;X + a X = bju + byu (®)
can be treated either by the system
A
él = X5 + blu

. (9)

%, = -a %, - a %, + (b,-a;b4 )u

or by the measure system
Dxl = X5 (%?)
Dx2 = -a X; = a;%, + leu + b2u.

The system @9) involves an enlargement of the initial state

and target and leads to confusion. However, the theory of

optimal control developed above for measure systems Qx» enables

a straight forward treatment of the optimal control to be given

which agrees with (0).
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